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1. Introduction

There has been much recent progress in the effort to completely establish the AdS/CFT

correspondence [1 – 3]. The full conjectured integrability of planar N = 4 Super Yang-

Mills [4 – 6] and its dual theory, the string sigma-model on an AdS5 × S5 target space [7],

has been instrumental in this progress. At least for the question of gauge operators of

infinite bare dimension, computing the spectrum has basically come down to finding a

two-particle S-matrix [8] that can be determined for both large and small values of the ’t

Hooft coupling.

For large ’t Hooft coupling, the scattering is that of string oscillators on the world-sheet,

while for small ’t Hooft coupling it more closely resembles the scattering of magnons on a

spin-chain. Remarkably, as was shown by Beisert [9, 10], the S-matrix is almost completely
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determined by the underlying superalgebra su(2|2) × su(2|2) with central extension, no

matter what the coupling. The only part of the S-matrix that cannot be determined

from the supergroup structure itself is an overall phase factor (the dressing phase), which

was conjectured first in the form of an asymptotic series at strong coupling [11], and

then non-perturbatively [12]. First steps towards derivation of the dressing phase from

Bethe ansatz were taken in the recent work [13, 14]. The conjectured dressing phase

makes the S-matrix crossing-symmetric [15] and passes a remarkable four-loop test at weak

’t Hooft coupling: decoration of the Bethe equations with the conjectured phase modifies

the anomalous dimensions starting from four loops and such a modification brings the

Bethe-ansatz prediction for the cusp anomalous dimension [12] into agreement with the

explicit four-loop calculation [16, 17].

It is remarkable that explicit four-loop calculations in N = 4 SYM are possible and

it is certainly desirable to reach comparable accuracy on the string side. Currently, state

of the art is the one-loop order: quantum corrections to the energies of various classical

string configurations have been computed in [18 – 20]. The purpose of this paper is to go

beyond the one-loop order. Since the full AdS5 ×S5 sigma-model [21] is quite complicated

we make use of the simplifying limit proposed recently by Maldacena and Swanson [22].

As in [23, 24], we will be interested in the world-sheet S-matrix which can be directly

compared to the su(2|2)× su(2|2) S-matrix [9, 10] with the conjectured dressing phase [11,

12]. The world-sheet S-matrix simplifies immensely in the Maldacena-Swanson limit, but is

nonetheless nontrivial since the resulting sigma model is still interacting. The limit is taken

by scaling all momenta, such that pλ1/4 is finite. The momenta of the string excitations

then sit in the “near-flat” region, between the noninteracting BMN regime [25] and the

classical giant magnon regime of [26]. For excitations in the near-flat region, although

there is no sin p/2 factor in the dispersion relation like in the case for giant magnons, the

Lorentz invariance of the BMN region is still broken by interaction terms. However, as we

will show this breaking of Lorentz invariance is rather mild, and in fact can be restored if

one compensates any Lorentz boost with a rescaling of the world-sheet coupling constant.

It might be possible to argue that the S-matrix satisfies the usual crossing symmetry as a

consequence of the usual LSZ theorems, with additional modifications due to this ”soft”

breaking of Lorentz invariance. We shall see that the crossing symmetry is certainly there

at the level of Feynman diagrams.

The near-flat limit also leads to a simplification of the Janik’s equation [15]. The odd

solution will still be a sum of dilogarithms, but the even phase simplifies tremendously

and will end up being the log of a rational function of the world-sheet coupling (and so

its contribution to the S-matrix is to multiply it by a rational function). It is simple to

check that this function is a solution to the near-flat limit of the BHL even equation.

The S-matrix for the various processes also turns out to be a quadratic polynomial of the

world-sheet coupling multiplied by a common function.

Computing quantum corrections is much simpler in the near-flat limit. The quartic

nature of the interaction terms makes the computations similar to those found in φ4 theory

in two dimensions. For two-point functions, supersymmetry prevents any tadpoles from

occuring, so there is no one-loop wave function renormalization or mass-shift. However,
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at the two-loop level there are sunset diagrams which induce radiative corrections to the

dispersion relation that agree with the predicted near-flat limit of the dispersion relation

in [22].

We then consider corrections to the four point amplitudes. We will compute these

corrections up to the two-loop level, where we will find agreement with the near-flat limit

of the BHL prediction. This provides the first nontrivial check that goes beyond the

tree level AFS [27] and one-loop HL [28] dressing factor terms. In carrying out these

computations, we will see that the final amplitudes for the different processes are very

similar, as they must be if they are to agree with the BHL S-matrix, but the road to

how these final amplitudes are reached can be significantly different. For example, for

certain 2 → 2 bosonic processes, there is a four-fermion interaction term that contributes

to the two-loop amplitude, while in other processes this interaction term plays no role. In

any case, the underlying supersymmetry must play a crucial part in determining the final

structure of these amplitudes. In going from the amplitude to the S-matrix, we must take

into account the two-loop wave-function renormalization as well as the two-loop mass-shift

which will affect the Jacobian factor that needs to be included.

This paper is structured as follows. In section 2 we review Maldacena and Swanson’s

action for the near-flat limit. In section 3 we consider the two-loop two-point functions,

where we explicitly compute the wave-function renormalization and mass-shift. In section 4

we derive the near-flat limit of the conjectured S-matrix. In section 5 we find the one-loop

four-point amplitudes while in section 6 we find these amplitudes at two loops. In these last

two sections we also show that these results are in agreement with the results in section 4.

In section 7 we present our conclusions. We also include several appendices which contain

some of the technical details of our calculations.

2. Near-flat-space model

Our starting point is the relatively simple light-cone action for the reduced model of [22](in

the notation of [24]):

L =
1

2
(∂Y )2 − m2

2
Y 2 +

1

2
(∂Z)2 − m2

2
Z2 +

i

2
ψ

∂2 + m2

∂−
ψ

+γ (Y 2 − Z2)
(

(∂−Y )2 + (∂−Z)2
)

+ iγ (Y 2 − Z2)ψ∂−ψ

+iγ ψ
(

∂−Y i′Γ i′ + ∂−ZiΓ i
)(

Y i′Γ i′ − ZiΓ i
)

ψ

− γ

24

(

ψΓ i′j′ψ ψΓ i′j′ψ − ψΓ ijψ ψΓ ijψ
)

. (2.1)

The bosonic fields Zi and Y i′ correspond to transverse excitations in the AdS5 and S5

directions respectively and the fermions, ψ, are Majorana-Weyl SO(8) spinors of positive

chirality.1 The action in 2.1 is not invariant under world-sheet Lorentz transformations,

but it is invariant under 8 independent linearly realized supersymmetries.

1See appendix C for a more complete description of the relevant conventions and notations.
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This action is the same as the near-flat space truncation of [22], however as in [24],

we have introduced the parameter γ by rescaling the worldsheet coordinates and further-

more we have integrated out the half of the original sixteen fermions which occured only

quadratically in the action. The near-flat space action action of [22] was obtained from

AdS5 × S5 string sigma-model by expanding about a constant density solution boosted

with rapidity ∼ λ1/4 in the σ− direction and so the above truncation should be equivalent

to the full theory in the near-flat limit,

p− ∼ 4
√

λ , p+ ∼ 1
4
√

λ
(2.2)

provided we set

γ =
π√
λ

(2.3)

and the mass, m, to be unity.

We can regard the reduced model (2.1) as an effective field theory of the full sigma-

model in this kinematical regime. Because the reduction procedure [22] is purely classical,

the effective action potentially can be modified by quantum corrections from integrating

out kinematically suppressed modes. However, one-loop calculations strongly suggest that

such modifications do not arise. We refer the reader to [24] for a more detailed discussion

of this point.

3. Two-loop propagator

We now turn to the computation of the two-loop correction to the propagator. Firstly, we

confirm that this leads to the expected mass shift and therefore the expected corrections

to the dispersion relation. Secondly, for our two-loop scattering computation in section 6,

it is necessary to know the residue of the pole in the propagator, which we determine here

as well.

The dispersion relation in the original sigma model is expected to be

ε = m

√

1 +
1

γ2
sin2 γp

m

(2.2)−−−−−→

√

m2 + p2 − γ2p4
−

3m2
. (3.1)

The second expression is the predicted exact dispersion relation in the near-flat limit (2.2).

We will now derive this dispersion relation from a Feynman diagram computation in the

model (2.1). This computation shows for the first time the emergence of the sine in the

dispersion relation from the perturbation expansion of the string sigma-model.

The first correction to the propagator is of order γ2 and the corresponding diagram

is the sunset diagram drawn in figure 3(b) on page 19. Doing the combinatorics for the

bosonic and the fermionic propagator, respectively, leads to

Ab(p) = 32iγ2
[

2p2
− (2I110 + I200) − p− (I111 + I210) + (4I211 + I220 + I310)

]

Af (p) = 16iγ2
[

p2
−I100 + 2p−I200 + 6I111 + 14I210 + I300

] (3.2)
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where

Irst(p) =

∫

d2k d2q

(2π)4
(k−)r (q−)s (p− − k− − q−)t

(k2 − m2)(q2 − m2)[(p − k− q)2 − m2]
. (3.3)

This integral is the sunset diagram with r, s and t powers of the three momenta inserted

into the numerator, cf. appendix B.2. Some of these factors originate from derivative

couplings, others are due to the extra power of p− in the fermionic propagator. We can

simplify the expression for the amplitudes using the identity

p−Irst = Ir+1,s,t + Ir,s+1,t + Ir,s,t+1 . (3.4)

Applying this identity repeatedly, we find that the amplitudes simplify to

Ab(p) =
64

3
iγ2p4

−I000(p
2) , Af (p) =

64

3
iγ2p3

−I000(p
2) , (3.5)

where I000 is a function of p2 only. It is interesting to see how the very different structures

in (3.2) reduce to essentially the same expression. We perform this integral in appendix B.2

and find for the on-shell amplitudes

Ab(p) = iγ2 p4
−

3m2
, Af (p) = iγ2 p3

−
3m2

. (3.6)

In order to find the corrected dispersion relation, we consider the iteration of sunset

diagrams (3.5). Via a geometric series this leads to the corrected propagator

i

p2 − m2 + 64
3 iγ2p4

−I000(p)

!
=

iZ(p−)

2p+ − Σ(p−)
+ finite as 2p+ → Σ(p−) , (3.7)

where there is an extra factor of p− in the numerator for the fermionic propagator. The

right hand side of (3.7) defines the position Σ(p−) and the residue Z(p−) of the pole in the

propagator in the 2p+ plane. Note that for our definition of the light-cone momenta (C.1),

2p+ is the appropriate “energy” for time evolution in σ+ direction.

The dispersion relation is determined by the pole in the propagator. To order γ2 we

only need the on-shell value (B.7) of the integral I000 and find

p+(p−) =
1

2
Σ(p−) =

m2

4p−
− γ2p3

−
12m2

. (3.8)

Using ε2 − p2 = 4p+p−, we convert this equation into the form ε(p) and find that this

dispersion relation exactly agrees with the prediction in (3.1).

For computing the residue we also need the on-shell value of the first derivative of I000

with respect to p2. Taking this integral from (B.8), we find the wave-function renormal-

ization to order γ2 to be

Z(p−) =
1

2p−

[

1 − γ2

m4

(

1

π2
− 1

12

)

p4
−

]

. (3.9)

This correction is an important contribution to the two-loop amplitudes which we compute

in section 6. It will turn out that this correction cancels the entire wineglass contribution

in the t-channel.
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4. SU(2|2) S-matrix

The SU(2|2) scattering matrix is expressed in terms of the following kinematic variables:2

x±(p) =
1 +

√
1 + P 2

P
e
± iπp√

λ , P =

√
λ

π
sin

πp√
λ

. (4.1)

For the S-matrix components, we use the conventions of [23]:

Scd
ab = Aδc

aδ
d
b + B δd

aδc
b , Sγδ

ab = C ǫabǫ
γδ ,

Sγδ
αβ = D δγ

αδδ
β + E δδ

αδγ
β , Scd

αβ = F ǫαβǫcd , (4.2)

Scδ
aβ = Gδc

aδ
δ
β , Sγd

aβ = H δd
aδγ

β ,

Sγd
αb = Lδγ

αδd
b , Scδ

αb = K δδ
αδc

b .

The explicit expressions for matrix elements are [9]:3

A =
x′
− − x−

x′
− − x+

1 − 1
x′
−x+

1 − 1
x′
+x+

,

B =
x′

+ − x−
x′
− − x+

(

1 − x′
− − x−

x′
+ − x−

1 − 1
x′
−x+

1 − 1
x′
+x+

)

,

C =
iηη′

x+x′
+

1

1 − 1
x′
+x+

x′
− − x−

x′
− − x+

e
iπp′1√

λ ,

D =
x′

+ − x+

x′
− − x+

1 − 1
x′
+x−

1 − 1
x′
−x−

e
iπ(p′1−p1)√

λ ,

E = 1 − x′
+ − x+

x′
− − x+

1 − 1
x′
+x−

1 − 1
x′
−x−

e
iπ(p′1−p1)√

λ ,

F = − i(x+ − x−)(x′
+ − x′

−)

ηη′x−x′
−

1

1 − 1
x′
−x−

x′
+ − x+

x′
− − x+

e
− iπp1√

λ ,

G =
x′

+ − x+

x′
− − x+

e
− iπp1√

λ , H =
η

η′
x′

+ − x′
−

x′
− − x+

e
iπ(p′1−p1)√

λ ,

L =
x′
− − x−

x′
− − x+

e
iπp′1√

λ , K =
η′

η

x+ − x−
x′
− − x+

, (4.3)

2We use the string normalization of momenta, which differs from the spin chain normalization in [9] by

a factor of 2π/
√

λ.
3Comparison with the explicit tree-level calculations [23] shows that the scattering in the sigma-model

is described by the SU(2|2) S-matrix in its canonical form [29] and should include phase factors e±πip1/
√

λ

and e±πip′

1
/
√

λ that multiply the S-matrix elements in particular combinations. In other possible forms,

which are related to the canonical S-matrix by state-dependent unitary transformations [29], e±πip1/
√

λ,

e±πip′

1
/
√

λ are replaced by arbitrary functions of p, p′ [10] (for instance by 1 as in the original proposal [9]).

It is interesting to note that in the near-flat-space limit the phase factors scale away and can be dropped

altogether.

– 6 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
1

where x± ≡ x±(p), x′
± ≡ x±(p′) and

η = |x− − x+|1/2, η′ = |x′
− − x′

+|
1/2

. (4.4)

The sigma-model scattering matrix is the tensor product of the two SU(2|2) S-matrices.

The world-sheet scattering amplitudes are thus quadratic in the A,B,C,D, . . .. In addition

the world-sheet scattering matrix contains an overall phase factor:S =
1 − 1

x′
+x−

1 − 1
x′
−x+

x′
− − x+

x′
+ − x−

e iθ(p,p′) S ⊗ S , (4.5)

where θ(p, p′) is the dressing phase. For reader’s convenience we have written the action

of S on all two-particle states in appendix D in order to see which matrix elements govern

which processes.

The dressing phase has the following general form [27, 30]:

θ(p, p′) =
∑

r,s=±
rs χ(xr, x

′
s) . (4.6)

The function χ(x, y) is anti-symmetric in x and y and can be expanded in asymptotic

power series in π/
√

λ. We only need the first three orders of this expansion:

χ(x, y) =

√
λ

2π
(x − y)

(

1 − 1

xy

)

ln

(

1 − 1

xy

)

+

∫ 1

0

dt

πt
ln

[

(1 − t)2xy − (t − x)2

(1 − t)2xy − (t + x)2
(1 − t)2xy − (t + y)2

(1 − t)2xy − (t − y)2

]

+
π

3
√

λ

xy + 1

xy − 1

x − y

(x2 − 1) (y2 − 1)
+ . . . . (4.7)

The first line is the AFS tree-level phase [27], the second line is the HL one-loop correc-

tion [28] and the third line is taken from [11]. The integral in the one-loop phase can be

expressed in terms of the dilogarithms, but for our purposes the integral representation is

more convenient. The first and last lines are part of BHL’s even phase, while the middle

line makes up the entire odd phase.

In the near-flat limit, the kinematic variables x± approach −1. However, the S-matrix

contains many expressions of the form xrx
′
s − 1 or xr − x′

s which vanish at xr = −1 = x′
s.

Plugging in −1 for x±, x′
± produces singularities and we need to keep the next term in the

expansion:

x± = −1 − 1

p−
± iπ√

λ
p− + . . . . (4.8)

The second and the third terms are small compared to one (they are of order O(λ−1/4))

and should be omitted wherever −1 does not cancel.

We thus get S =
1 − iπ√

λ
p−p′−

p′−−p−
p′−+p−

1 + iπ√
λ

p−p′−
p′−−p−
p′−+p−

e iθ(p,p′)

1 + π2

λ p2
−p′2−

(

p′−+p−
p′−−p−

)2 S ⊗ S (4.9)
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where the matrix elements are as in (4.2) with4

A = 1 +
iπ√
λ

p−p′−
p′− − p−
p′− + p−

, B = −E =
4iπ√

λ

p2
−p′2−

p′2− − p2
−

,

D = 1 − iπ√
λ

p−p′−
p′− − p−
p′− + p−

, C = F =
2iπ√

λ

p
3/2
− p

′3/2
−

p′− + p−
,

G = 1 +
iπ√
λ

p−p′− , H = K =
2iπ√

λ

p
3/2
− p

′3/2
−

p′− − p−
,

L = 1 − iπ√
λ

p−p′− . (4.10)

We should stress that these expressions are exact in the near-flat limit. For comparison to

the two-loop calculation in section 6 we need to further expand in πp2
−/

√
λ.

When expanding the phase in π/
√

λ it is important to remember that it implicitly de-

pends on λ through x±, apart from the explicit dependence manifest in (4.7). In particular

the tree-level term in (4.7) contains a two-loop correction to the phase. The substitution

of (4.8) into (4.6), (4.7) yields after a lengthy but straightforward calculation:

θ(p, p′) =
2π√

λ
p−p′−

p′− − p−
p′− + p−

− 4π3

3λ3/2
p3
−p′3−

(p′− − p−)(p′2− + p−p′− + p2
−)

(p′− + p−)3

+
8π

λ

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

+
2π3

3λ3/2
p3
−p′3−

(p′− − p−)(p′2− + 4p−p′− + p2
−)

(p′− + p−)3
+ . . . . (4.11)

Omitting O
(

( p
4√

λ

)6
)

terms this can be written in the following nice form, suggested by

the main scattering term,

θ(p, p′) = −i ln
1 + iπ√

λ
p−p′−

p′−−p−
p′−+p−

1 − iπ√
λ

p−p′−
p′−−p−
p′−+p−

+
8π

λ

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

, (4.12)

where the first (second) term comes from the even (odd) phase.5 Equation (4.9) becomesS = S0 S ⊗ S with S0 =
e

8πi
λ

p3
−p′3−

p′2−−p2
−

„

1−
p′2−+p2

−
p′2−−p2

−
ln

p′−
p−

«

1 + π2

λ p2
−p′2−

(

p′−+p−
p′−−p−

)2 (4.13)

where S is given by (4.2), (4.10). At the end, the dressing phase almost completely cancels

the main scattering phase, and the two-loop prediction for the scattering amplitude turns

4We chose to pull out a common factor of
“

1 − iπ√
λ

p−p′
−

p′

−
+p−

p′

−
−p−

”−1

from S.

5We suspect that the even part of the phase in 4.12 is valid to all orders in γ. We checked this by taking

the near-flat limit of the BHL phase to order γ11. Furthermore, one can readily see that it solves the near

flat limit of the even crossing relation of (2.13) in [11] . It should be possible to prove (or disprove) this

fact by inspecting the integral representation of the phase found in [31].

– 8 –
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out to be rather compact. We should stress that (4.13) is only accurate up to O(1/λ2)

(the full expression is expected to contain dilogarithms from the odd phase) while matrix

elements (4.10) are exact in the near-flat sigma-model.

In order to facilitate the comparison with the results from the world-sheet computation,

let us discuss the first few orders of (4.13). The n-th loop contribution to the two-particle

S-matrix is of order γn+1 =
(

π√
λ

)n+1
and we denote it by S(n). Now, we observe that

the prefactor S0 in (4.13) does not have a term of order γ = π√
λ

and that the coefficients

in (4.10) stop at order γ = π√
λ
. Hence, the tree-level contribution to the S-matrix S(0)

originates only from the matrix elements in (4.10), the one-loop contribution S(1) receives

additional terms from the prefactor S0 and the two-loop contribution is of the formS(2) =
π2

λ

[

−p2
−p′2−

(

p′− + p−
p′− − p−

)2

+
8i

π

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

]S(0) , (4.14)

i.e. the two-loop piece reproduces the tree-level S-matrix multiplied by a factor that is

universal for all scattering processes.

We close this section by noting that the S-matrix can be put into a form that looks

almost relativistic. Under boosts the momenta, derivatives and fields transform as

p± → α∓1p± , ∂± → α∓1∂± , Z, Y → Z, Y , ψ → √
α ψ , (4.15)

where α is the boost parameter. If these transformation are accompanied by a rescaling of

the coupling γ → α−2 γ, then the Lagrangian (2.1) is invariant under these transformations.

As a consequence the S-matrix can be written as a function of a momentum dependent,

but boost invariant coupling

γ̃ = γ̃(p, p′) = γ p−p′− (4.16)

and the relative rapidity θ = arcsinh p
m − arcsinh p′

m = ln
p′−
p−

. Rewriting (4.13) and (4.10),

we find S =
e

4iγ̃2

π
1−θ coth θ

sinh θ

1 + γ̃2 coth2 θ
2

S ⊗ S , (4.17)

with

A = 1 + iγ̃ tanh θ
2 , B = −E = 2iγ̃ csch θ

2 ,

D = 1 − iγ̃ tanh θ
2 , C = F = iγ̃ sech θ

2 ,

G = 1 + iγ̃ , H = K = iγ̃ csch θ
2 ,

L = 1 − iγ̃ . (4.18)

It would be interesting to see if a proof of crossing symmetry can be obtained given this

relatively mild breaking of the Lorentz invariance.

5. One-loop amplitudes

In this section we present the general bosonic one-loop amplitudes and S-matrices for 2 → 2

magnon scattering in the near-flat limit. These results generalize the case of ZY → ZY

presented in [24].
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For all processes, there are three basic diagrams which are shown in figure 1. We call

these graphs the s, t and u-channel graphs. Within each of these graphs, there can be

several contributions to the complete loop in that channel. However, summing over the

contributions will lead to three basic structures for the one-loop amplitudes. The first

of these is a structure associated with forward scattering, the second is a permutation

structure and the third is a trace like structure. The latter two structures are related to

each other through crossing symmetry.

The one-loop amplitudes are relatively straightforward to carry out. For an amplitude

of forward scattering type (for example Z1(p)Y1(p
′) −→ Z1(p)Y1(p

′)), the amplitude is

found to be

A(1)
forward(p−, p′−) = −8γ2

[

(p′− + p−)2(p′2− + p2
−)I00(p,−p′) − 8p2

−p′2−I00(p, p)

+ (p′− − p−)2(p′2− + p2
−)I00(p, p′)

]

,
(5.1)

where I00(p, p′) is the u-channel loop integral defined in (B.1). The s and t channel inte-

grals are given by analytically continuing p′− to −p′− and letting p′− → p−, respectively.

Substituting the results for the integrals into (5.1) gives

A(1)
forward(p−, p′−) =

16iγ2p2
−p′2−

π

[

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

]

− 4γ2 p−p′−(p′− + p−)(p2
− + p′2−)

p′− − p−
.

(5.2)

This result was previously derived in [24].

The next type of scattering process is of the permutation type, where the outgoing p

and p′ are exchanged with a forward scattering process. In this case, summing over the

contributions to the Feynman diagrams, we find

A(1)
perm(p−, p′−) = −16γ2

[

p−p′−(p′− + p−)2I00(p,−p′) + p−p′−(p′− + p−)2I00(p, p′)
]

, (5.3)

where in these processes the contribution to the t-channel cancels out and the u-channel

integral comes with the same kinematic factor as the s-channel. Substituting for the

integrals into (5.3) we arrive at

A(1)
perm(p−, p′−) = −8γ2 p2

−p′2−(p′− + p−)

p′− − p−
. (5.4)

Finally the processes of trace type, which are of the form AĀ −→ BB̄, where A and

B are any one of the fields and Ā and B̄ are there conjugates is given by

A(1)
trace(p−, p′−) = 16γ2

[

p−p′−(p′− − p−)2I00(p,−p′) + p−p′−(p′− − p−)2I00(p, p′)
]

, (5.5)

which after substituting for the integrals gives

A(1)
trace(p−, p′−) = 8γ2 p2

−p′2−(p′− − p−)

p′− + p−
. (5.6)

The amplitudes in (5.4) and (5.6) are related by crossing symmetry by taking p′− → −p′−.

However, there is a subtlety in the analytic continuation, since the amplitudes were obtained

by continuing around a log cut. When continuing, say, A(1)
trace(p−, p′−) to A(1)

trace(p−,−p′−),

one continues onto a different branch, hence leading to an extra minus sign.

– 10 –
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(a) s-channel (b) t-channel (c) u-channel

Figure 1: One-loop graphs. The basic structure for s, t and u channel graphs.

6. Two-loop amplitudes

In this section we compute the two-loop amplitudes for various four-point processes and

show that there is complete agreement with the S-matrix results in section 4. One conse-

quence of the structure of the S-matrix is that the two-loop amplitudes should be related

to the tree amplitudes by a universal factor γ2F (p−, p′−), which we will explicitly show.

In order to obtain the S-matrix, one must take into account the wave-function renor-

malization of the external legs as well as a Jacobian factor that arises when converting

δ-functions for overall conservation of energy and momentum to δ-functions for individual

momenta. Moreover, there is a two-loop contribution to this Jacobian due to the two-loop

mass-shift. The contributions from the wave-function renormalization and Jacobian will

cancel off against certain terms in the amplitude to give very compact expressions for the

S-matrix.

Since all interaction terms in (2.1) are four-point, the general structure for the two-

loop Feynman diagrams have the form shown in figure 2. The diagrams fall into the 3

general classes, “double bubble”, “wineglass” and “inverse wineglass” for each of the s,

t and u channels. The bosonic vertices all come with two powers of p−, a vertex with

two bosons and two fermions has one power of p−, while the four-fermion vertex has no

powers of momenta. The fermion propagator also comes with a factor of p−, therefore the

amplitudes will all have world-sheet spin −6. Naive power counting might indicate that

these diagrams are divergent, however the two-dimensional Lorentz invariance of the free

theory and the chirality of the interaction vertices insures that these divergences are not

there.6

Let us start with the easiest set of diagrams to evaluate, the t-channel double bubble.

For these diagrams, no external momentum flows through the internal propagators. One

can argue that there must be at least two powers of the internal momenta in the numerators

6Because the vertices depend only on p−, the integrand of a generic Feynman diagram is a polynomial in

p−’s multiplied by a product of scalar propagators. Potential divergences due to large internal momentum

terms in the numerator go away after the angular integration, rendering all diagrams without tadpoles

finite. It remains to show that the tadpoles cancel, which is indeed the case: the fermion tadpoles are

nullified by angular integration, and the Y tadpole is canceled by the Z tadpole.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Two-loop graphs. The first line shows the s-channel diagrams, the second line the t-

channel and the last u-channel. To the diagrams in the first column, we refer to as “double bubble”,

to the second column as “wineglass” and to the third as “inverse wineglass”.

of the two-loop integrals, which by the Lorentz invariance of the free theory, must be zero,

and so the t-channel bubbles all have Abubble
t (p, p′) = 0.

The next set of diagrams we consider are the u and s channel double bubbles. Different

processes have different combinatoric factors contributing to the loop integrals, but their

final results all reduce to the same form, with the u-channel given by

Abubble
u (p, p′) = γ2A(0)(p−, p′−)F bubble(p−, p′−) , (6.1)
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where A(0)(p−, p′−) is the tree-level amplitude for the corresponding process and

F bubble(p−, p′−) = −
[

2(p′− − p−)2I00(p−, p′−)
]2

. (6.2)

Irs(p−, p′−) is the one-loop u-channel integral defined in (B.1). The s-channel can be

obtained easily from the u-channel result by continuing p′− → −p′− in F bubble(p−, p′−), but

not in A(0)(p−, p′−), resulting in

Abubble
s (p−, p′−) = γ2A(0)(p−, p′−)F bubble(p−,−p′−) . (6.3)

Combining the double bubbles together and substituting the expression for I00(p−, p′−)

in (B.2), results in

Abubbles
stu = γ2A(0)(p−, p′−)

[

− p2
−p′2−(p′− + p−)2

(p′− − p−)2
− 2ip2

−p′2−(p′− + p−)2

π(p′− − p−)2
ln

p′−
p−

+
2p2

−p′2−(p4
− + 6p2

−p′2− + p′4−)

π2(p′2− − p2
−)2

ln2 p′−
p−

]

.

(6.4)

The wineglass diagrams are computationally more challenging because their loop inte-

grals do not factorize into products of one-loop integrals. Nevertheless we are able to obtain

compact expressions for these as well. Like the double bubble diagrams, all 2 → 2 pro-

cesses have the same proportionality factor to their tree level amplitude. For the u-channel

wineglass, we find the expression

Awine
u (p, p′) = 16γ2A(0)(p−, p′−)Fwine(p−, p′−) , (6.5)

where

Fwine(p−, p′−) = 16
[

− 4p2
−p′2− W0(p−, p′−) + 8p−p′−(p′− + p−)W1(p−, p′−)

− (p2
− + 6p−p′− + p′2−)W2(p−, p′−)

]

.
(6.6)

The wineglass integrals Wr(p−, p′−) are defined and discussed in appendix B.3. Different

processes have very different combinations to reach this same final form in (6.5) and (6.6).

The s-channel wineglass is again related to the u-channel form by analytically continuing

p′ → −p′ in Fwine(p−, p′−),

Awine
s (p, p′) = γ2A(0)(p−, p′−)Fwine(p−,−p′−) . (6.7)

Likewise, we also find that the t-channel wineglass has a simple relation to the other

wineglass diagrams, namely we simply set p′− = p− in Fwine(p−, p′−), giving us

Awine
t (p, p′) = γ2A(0)(p−, p′−)Fwine(p−, p−) . (6.8)

For the inverse wineglass diagrams, it is straightforward to show by the symmetries in

the diagrams that

Ainverse
u (p−, p′−) = Awine

u (p−, p′−) ,

– 13 –
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Ainverse
s (p−, p′−) = Awine

s (p−, p′−) , (6.9)

while the t-channel inverse wineglass is

Ainverse
t (p, p′) = γ2A(0)(p−, p′−)Fwine(p′−, p′−) . (6.10)

Putting together the terms in (6.5), (6.7) and (6.9) and also using (6.6) and the ex-

pressions for Wr(p−, p′−) in appendix B.3 , we obtain the combined su wineglass

Awineglasses
su = γ2A(0)(p−, p′−)

[

− p2
−p′2− +

8i p3
−p′3−

π(p′2− − p2
−)

+
2ip2

−p′2−(p4
− + 6p2

−p′2− + p′4−)

π(p′2− − p2
−)2

ln
p′−
p−

− 2p2
−p′2−(p4

− + 6p2
−p′2− + p′4−)

π2(p′2− − p2
−)2

ln2 p′−
p−

]

.

(6.11)

Combining the t-channel wineglass with its inverse gives

Awineglasses
t = γ2A(0)(p−, p′−)

[(

1

π2
− 1

12

)

(p′4− + p4
−)

]

, (6.12)

and then combining this with (6.4) and (6.11), we reach the final two-loop amplitude

A(2)(p−, p′−) = Abubbles
stu (p−, p′−) + Awineglasses

su (p−, p′−) + Awineglasses
t (p−, p′−)

= γ2A(0)(p−, p′−)

[

−p2
−p′2−(p′− + p−)2

(p′− − p−)2
+

8ip3
−p′3−

π(p′2− − p2
−)

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

−p2
−p′2− +

(

1

π2
− 1

12

)

(p′4− + p4
−)

]

. (6.13)

One should immediately note that the (ln
p′−
p−

)2 terms that appear in (6.4) and (6.11),

but which are absent in the two-loop S-matrix in (4.10), (4.13) have canceled off in the

final amplitude! One can also easily see that the first line of (6.13) has precisely the right

form as (4.14). The first term in the second line is accounted for by a Jacobian factor,

while the second term in this line, which is due entirely to the t-channel contributions, is

compensated by wave-function renormalization of the external legs. In fact, the renormal-

ization of the legs with momentum p through them cancels off with the t-wineglass, while

the renormalization of the p′ legs cancels against the inverse t-wineglass.

The Jacobian arises because the amplitudes come with factors of δ2(Pµ
out − Pµ

in), while

the S-matrix is written with factors of δ(p− − q−)δ(p′− − q′−). These are related by

δ2(Pµ
out − Pµ

in) =
1

2

(

dp′+
dp′−

− dp+

dp−

)−1

δ(p− − q−)δ(p′− − q′−) . (6.14)

Taking into account the two-loop dispersion relation in (3.8), we find for the Jacobian

1

2

(

dp′+
dp′−

− dp+

dp−

)−1

=
2p2

−p′2−
m2(p′2− − p2

−)

[

1 +
γ2

m4
p2
−p′2−

]

. (6.15)
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The full S-matrix has the formS = 1+
1

2

(

dp′+
dp′−

− dp+

dp−

)−1

Z(p−)Z(p′−)A . (6.16)

Thus, after setting m = 1 and substituting in (6.15) and (3.9), the two-loop contribution

to the S-matrix isS(2) =
p−p′−

2(p′2− − p2
−)

[

A(2) + γ2A(0)

(

p2
−p′2− −

(

1

π2
− 1

12

)

(p′4− + p4
−)

)

]

(6.17)

Using the result for A(2) in (6.13), we reach the final expressionS(2) = γ2A(0) p3
−p′3−

2(p′2− − p2
−)

[

−
(

p′− + p−
p′− − p−

)2

+
8i

π

p−p′−
p′2− − p2

−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

]

, (6.18)

which agrees precisely with the conjectured form (4.14), since S(0) = A(0) p−p′−
2(p′2−−p2

−)
.

7. Conclusions and outlook

The sigma-model describing the super-string on AdS5 × S5 is a rather complicated theory

and calculating the complete quantum S-matrix remains a formidable problem. Fortu-

nately consideration of the near-flat space limit, as described in [22], results in significant

simplifications which make loop calculations feasible. The reduced sigma-model has at

most quartic interactions and the right movers essentially decouple from the interacting

left-movers. Just as for the full string theory in the light-cone gauge the reduced model is

not Lorentz invariant however if boosts are combined with a rescaling of the loop parameter

the action is indeed invariant. This can be seen in the world-sheet S-matrix which depends

only on the difference of rapidities and an effective, momentum dependent, coupling. Fur-

thermore the simplified theory possesses at least (0, 2) worldsheet supersymmetry.

As an important step in the calculation of the S-matrix we computed the two-loop

two point function with the corresponding mass shift and wavefunction renormalisation.

This is an interesting result in its own right as we can explicitly see the modification of the

relativistic dispersion by the sine function at higher powers of the momenta. In the gauge

theory description the sine function arises naturally from the intrinsic discreteness of the

spin-chain and indeed from the point of view of soliton description [26] the momentum is a

periodic variable as it corresponds to the angular separation of the string endpoints. This

is however the first case where the sine function has been seen to originate from quantum

corrections to excitations about a plane-wave vacuum. Additionally in calculating the full

SU(2|2) S-matrix we are able to check that the symmetries of the classical theory are

realized at higher loop order.

Given the central role of the world-sheet S-matrix in recent developments of our un-

derstanding of the AdS/CFT correspondence it certainly interesting to extract as much

information and intuition from this reduced model as possible. The spectacular agreement

of our calculations with the appropriate limit of the conjectured exact S-matrix of [11, 12]
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provides further strong evidence in favor of its validity. It should be straightforward, though

perhaps technically challenging, to extend the loop calculation to even higher orders which

would provide yet further confirmation of the complete S-matrix. However, given that the

theory is presumably integrable, it may be more profitable to try to find a complete solu-

tion using more non-perturbative techniques perhaps along the lines discussed in [32]. This

would allow one to answer an outstanding issue not addressed by the perturbative calcula-

tion, that of the pole structure of the S-matrix. Although we consider the near-flat space

limit which interpolates between the plane wave limit and the giant magnon regime we do

not see the double poles of the S-matrix corresponding to exchange of BPS magnons [31];

which would require a resummation of the entire perturbative expansion.

Note added While this paper was being prepared for publication we received [33] where

the study of two-loop quantum corrections to the energies of classical string solutions was

initiated.
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A. S-matrix elements

A.1 Bosons

We write the action of the T-matrix, which is defined as S = 1+T, onto all bosonic initial

states. We omit fermions in the final states. Using an SO(4) ⊗ SO(4) notation, we define

the matrix elements as follows:T|ZiZ
′
j〉 = |ZiZ

′
j〉IZZ + |ZjZ

′
i〉PZZ + δij |ZkZ

′
k〉TZZ + δij |Yk′Y ′

k′〉KZZ , (A.1)T|ZiY
′
j′〉 = |ZiY

′
j′〉IZY + |Yj′Z

′
i〉PZY , (A.2)T|Yi′Z

′
j〉 = |Yi′Z

′
j〉IY Z + |ZjY

′
i′〉PY Z , (A.3)T|Yi′Y

′
j′〉 = |Yi′Y

′
j′〉IY Y + |Yj′Y

′
i′〉PY Y + δi′j′ |Yk′Y ′

k′〉TY Y + δi′j′|ZkZ
′
k〉KY Y (A.4)

The world-sheet computation yields

I
(0)
ZZ = −I

(0)
Y Y = −2iγ

p−p′−(p′2− + p2
−)

p′2− − p2
−

P
(0)
ZZ = −P

(0)
Y Y = −4iγ

p2
−p′2−

p′2− − p2
−
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T
(0)
ZZ = −T

(0)
Y Y = +4iγ

p2
−p′2−

p′2− − p2
−

K
(0)
ZZ = −K

(0)
Y Y = 0

I
(1)
ZZ = +I

(1)
Y Y = −2γ2 p2

−p′2−(p′2− + p2
−)

(p′− − p−)2
+

8iγ2

π

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

P
(1)
ZZ = +P

(1)
Y Y = −4γ2 p3

−p′3−
(p′− − p−)2

T
(1)
ZZ = +T

(1)
Y Y = +4γ2 p3

−p′3−
(p′− + p−)2

K
(1)
ZZ = +K

(1)
Y Y = −4γ2 p3

−p′3−
(p′− + p−)2

I
(2)
ZZ = −I

(2)
Y Y =+2iγ3 p3

−p′3−(p′−+p−)(p′2−+p2
−)

(p′− − p−)3
+

16γ3

π

p4
−p′4−(p′2−+p2

−)

(p′2− − p2
−)2

(

1− p′2−+p2
−

p′2−−p2
−

ln
p′−
p−

)

P
(2)
ZZ = −P

(2)
Y Y = +4iγ3 p4

−p′4−(p′− + p−)

(p′− − p−)3
+

32γ3

π

p5
−p′5−

(p′2− − p2
−)2

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

T
(2)
ZZ = −T

(2)
Y Y = −4iγ3 p4

−p′4−(p′− + p−)

(p′− − p−)3
− 32γ3

π

p5
−p′5−

(p′2− − p2
−)2

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

K
(2)
ZZ = −K

(2)
Y Y = 0

I
(0)
ZY = −I

(0)
Y Z = −2iγ p−p′−

P
(0)
ZY = −P

(0)
ZY = 0

I
(1)
ZY = +I

(1)
Y Z = −2γ2 p2

−p′2−(p′2− + p2
−)

(p′− − p−)2
+

8iγ2

π

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

P
(1)
ZY = +P

(1)
Y Z = −4γ2 p3

−p′3−
(p′− − p−)2

I
(2)
ZY = −I

(2)
Y Z = +2iγ3 p3

−p′3−(p′− + p−)2

(p′− − p−)2
+

16γ3

π

p4
−p′4−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

P
(2)
ZY = −P

(2)
Y Z = 0

These coefficients have to be compared to the S-matrix elements (4.13) in the follow way:

1 + IY Y = S0 A (A + B) , 1 + IZZ = S0 D (D + E) , (A.5)

PY Y = S0 B (A + B) , PZZ = S0 E (D + E) ,

TY Y = −S0 AB , TZZ = −S0 D E ,

KY Y = −S0 C2 , KZZ = −S0 F 2 ,

1 + IZY = S0 L2 , 1 + IY Z = S0 G2 ,

PZY = S0 K2 , PY Z = S0 H2 .

Here S0 denotes the prefactor in (4.9). We find perfect agreement. Note that we are

sensitive to all matrix elements, even though we concentrate onto the scattering among
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bosons. This is because the field Z actually carries two fermionic indices in the su(2|2)2
notation.

A.2 SU(2|2) subsector

We now extend our considerations to include processes involving fermions, however, we

restrict ourselves to a single su(2|2) sector. Granting the group factorization of the full

S-matrix, this is a sufficient test of the supersymmetries at higher loop orders.

As described in appendix C, we identify in the worldsheet theory the fields φa and χα

spanning an su(2|2) sector. We calculate the matrix elements defined as follows:S|φaφ
′
b〉 = S0A|φaφ

′
b〉 + S0B|φbφ

′
a〉 + S0Cεabε

αβ |χαχ′
β〉 , (A.6)S|χαχ′

β〉 = S0D|χαχ′
β〉 + S0E|χβχ′

α〉 + S0Fεαβεab|φaφ
′
b〉 , (A.7)S|φaχ

′
β〉 = S0G|φaχ

′
β〉 + S0H|χβφ′

a〉 , (A.8)S|χαφ′
b〉 = S0K|φbχ

′
α〉 + S0L|χαφ′

b〉 . (A.9)

For the sake of brevity we will not record the individual amplitudes but simply state the

final results for the S-matrix elements, noting that they agree with the all-order prediction

from the dual spin chain description. There is a common contribution to each element of

the form S0 = 1 + iδ where

δ =
8γ

π

p3
−p′3−

p′2− − p2
−

(

1 − p′2− + p2
−

p′2− − p2
−

ln
p′−
p−

)

(A.10)

in addition to the individual contributions

A = 1+2iγ
p−p′−(p2

− + p′2−)

p′2− − p2
−

− 2γ2 p2
−p′2−(p2

− + p′2−)

(p′− − p−)2
+ 2iγ3 p3

−p′3−(p3
− + p2

−p′− + p−p′2− + p′3−)

(p′− − p−)3

B = −E = 4iγ
p2
−p′2−

p′2− − p2
−
− 4γ2 p3

−p′3−
(p′− − p−)2

− 4iγ3 p4
−p′4−(p− + p′−)

(p′− − p−)3

C = F = 2iγ
(p−p′−)

3
2

p′− + p−
− 2γ2 (p−p′−)

5
2

(p′− − p−)
− 2iγ3 (p−p′−)

7
2 (p− + p′−)

(p′− − p−)2

D = 1 + 4iγ
p2
−p′2−

p′2− − p2
−
− 4γ2 p3

−p′3−
(p′− − p−)2

− 4iγ3 p4
−p′4−(p− + p′−)

(p′− − p−)3

G = 1 + 2iγ
p−p′2−

p′− − p−
− 2γ2 p2

−p′3−(p− + p′−)

(p′− − p−)2
− 2iγ3 p3

−p′4−(p− + p−)2

(p′− − p−)3

H = K = 2iγ
(p−p′−)

3
2

p′− − p−
+ 2γ2 (p−p′−)

5
2 (p− + p′−)

(p′− − p−)2
− 2iγ3 (p−p′−)

7
2 (p− + p′−)2

(p′− − p−)3

L = 1 + 2iγ
p2
−p′−

p′− − p−
− 2γ2 p3

−p′2−(p− + p′−)

(p′− − p−)2
− 2iγ3 p4

−p′3−(p− + p−)2

(p′− − p−)3
.

In considering a single SU(2|2) sector the full S-matrix isS = S0 S ⊗ (A + B) (A.11)
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(a) bubble

pp q, s

k, r

p − k − q, t

(b) sunset

p′p

p′ − p

−k, n1

k + q, n2

q − p, n3 p′ − q, n4

(c) wineglass

Figure 3: Loop diagrams

as one index in the tensor product is kept fixed by the scattering. Thus we can write these

elements in a simple compact form in terms of the S-matrix defined in 4.10,S =
eiδ

1 − iγp−p′−
p′−+p−
p′−−p−

S ⊗ 1 , (A.12)

and which of course is in agreement with the AdS/CFT prediction to this order. Thus we

see that the symmetries are preserved to at least two-loops in the reduced sigma model.

B. Integrals

B.1 Bubble integral

We consider the bubble integral, cf. figure 3(a), for two inflowing momenta p and −p′ as

appropriate for u-channel processes. With r and s powers of momentum inserted, the

integral reads

Irs(p, p′) =

∫

d2k

(2π)2
(k−)r(p− − p′− − k−)s

(k2 − m2)[(p − p′ − k)2 − m2]
. (B.1)

These momenta originate from derivative couplings and fermionic propagators. However,

it turns out that all amplitudes simplify such that we only need to explicitely compute I00,
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which is immediately found to be

I00(p, p′) =
i

2πm2

p−p′−
p′2− − p2

−
ln

p′−
p−

. (B.2)

In the s-channel, the inflowing momenta are p and p′. The integral I00(p,−p′) is obtained

from (B.2) by analytically continuing the logarithm. In the t-channel, the total inflowing

momentum is zero and we obtain from (B.2) in the limit p′ → p:

I00(p, p) =
i

4πm2
. (B.3)

B.2 Sunset integral

The general sunset diagram, figure 3(b), is defined as

Irst(p) =

∫

d2k d2q

(2π)4
(k−)r (q−)s (p− − k− − q−)t

(k2 − m2)(q2 − m2)((p − k− q)2 − m2)
. (B.4)

There is the relation

p−Irst = Ir+1,s,t + Ir,s+1,t + Ir,s,t+1 (B.5)

between different integrals which follows immediately from taking the p− on the left hand

side into the integrand and writing it as k− + q− + (p− − k− − q−). Using this identity, it

is possible to reduce all sums of sunset diagrams that occur in the two-loop propagator to

I000. We solve this integral by introducing three Feynman parameters

I000(p
2) =

1

16π2

∫ 1

0

dx1 dx2 dx3 δ(x1 + x2 + x3 − 1)

m2(x1x2 + x1x3 + x2x3) − p2 x1x2x3
. (B.6)

Observe that this integral depends only on p2. On-shell the value of the integral is

I000(p
2 = m2) =

1

64m2
. (B.7)

Apart form this, we also need the on-shell value of the first derivative of I000 with repect

to its argument, which is given by

I ′000(p
2 = m2) =

1

(4π)2m4

∫ 1

0

dx1 dx2 dx3 δ(x1 + x2 + x3 − 1)x1x2x3

(x1x2 + x1x3 + x2x3 − x1x2x3)2

=
3

64m4

(

1

π2
− 1

12

)

.

(B.8)

B.3 Wineglass integral

The wineglass diagram as drawn in figure 3(c) reads

Wrstu(p, p′) =

∫

d2k d2q

(2π)4
(k−)n1(q−)n2(k− + q− − p−)n3(p′− − k− − q−)n4

(k2 − m2)(q2 − m2)[(k + q − p)2 − m2][(p′ − k − q)2 − m2]
.

(B.9)

We note the identities

Wrstu(p, p′) = Wsrtu(p, p′) = (−1)t+uWrsut(p
′, p) = (−1)r+s+t+uWrstu(−p,−p′) . (B.10)
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All sums of wineglass integrals that occur in the two-loop amplitudes can be reduced to

combinations of the following three terms which we compute by standard means and find

W0(p, p′) = W0000(p, p′)

= − p−p′−
16π2m4

[

π2

4(p′− + p−)2
+

1

(p′2− − p2
−)

ln
p′−
p−

− p−p′−
(p′2− − p2

−)2
ln2 p′−

p−

]

, (B.11)

W1(p, p′) = W1000(p, p′)

= − p−p′−
16π2m4

[

π2

8(p′− + p−)
− p−p′−

2(p′− − p−)(p′2− − p2
−)

ln2 p′−
p−

]

, (B.12)

W2(p, p′) = W1100(p, p′) + W2000(p, p′)

= − p−p′−
16π2m4

[

π2

12
− p−p′−

2(p′− − p−)2
ln2 p′−

p−

]

. (B.13)

C. Notations

In this section we summarize several of the notations used throughout the main text and

record several useful results. We make use of the light-cone coordinates and momenta

σ± = σ0 ± σ1 , p± = 1
2(p0 ± p1) (C.1)

so that the worldsheet metric is ηµν = (+,−). We also use the notation ε = p0 and p = p1,

and bold-face for world-sheet two-vectors like p = (p0, p1).

It is convenient to perform quantization in world-sheet light-cone coordinates with σ+

as time and where the target space fields have the mode expansions

Zi(σ) =

∫

dp−
2π

1√
2p−

[

ai(p−) e−ip·σ + a†i (p−) e+ip·σ
]

, (C.2)

Yi′(σ) =

∫

dp−
2π

1√
2p−

[

ai′(p−) e−ip·σ + a†i′(p−) e+ip·σ
]

, (C.3)

ψ(σ) =

∫

dp−
2π

1√
2

[

b(p−) e−ip·σ + b†(p−) e+ip·σ
]

. (C.4)

The free bosonic and fermionic propagators are

i

p2 − m2
,

ip−
p2 − m2

(C.5)

and the free dispersion relation is 2p+ = m2

2p−
.

We use the following representation for the 16 × 16 γ-matrices

Γ 1 = ǫ × ǫ × ǫ × ǫ Γ 5 = τ3 × ǫ × 1× ǫ

Γ 2 = 1× τ1 × ǫ × ǫ Γ 6 = ǫ × 1× τ1 × ǫ (C.6)

Γ 3 = 1× τ3 × ǫ × ǫ Γ 7 = ǫ × 1× τ3 × ǫ

Γ 4 = τ1 × ǫ × 1× ǫ Γ 8 = 1× 1× 1× τ1
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with

ǫ =

(

0 1

−1 0

)

, τ1 =

(

0 1

1 0

)

, τ3 =

(

1 0

0 −1

)

. (C.7)

We also define Γ 9 = Γ 1Γ 2 · · ·Γ 8 and PL,R = 1
2 (1± Γ 9). The fermion ψ is a real, positive

chirality spinor and hence has eight real degrees of freedom.

The su(2|2) sector considered in section A.2 is spanned by the bosonic fields

φ1 =
1√
2
(Y5 + iY6) , φ2 =

1√
2
(Y7 + iY8) , (C.8)

and the fermionic fields, χα, which are most easily defined in terms of the projection

operators,

P I
± =

1

2

(1± Γ 1Γ 2Γ 3Γ 4
)

P II
± =

1

2

(1± i

2

(

Γ 56 + Γ 78
)

)

P III
± =

1

2

(1± i

2

(

Γ 12 + Γ 34
)

)

, (C.9)

such that,

χ3 = P III
+ P II

+ P I
−PLψ ,

χ4 = P III
− P II

+ P I
−PLψ . (C.10)

These correspond to the fields φa = Ya1̇ and χα = Υα1̇ in the notation of [23].

D. S-matrix action

We spell out the action of the S-matrix onto the entire set of two-particle states in su(2)4

notation, cf. [24]. This serves as a reference for which processes can occur. Taking into

account that the coefficients B, E, C, F , H, K are of order γ = π√
λ
, we see that some of

the processes are absent at tree-level. The terms that are present at tree-level are printed

in bold face. To simplify the formulas, we suppress the S0 that multiplies all right hand

sides in the following.
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Boson-BosonS|YaȧY
′
bḃ
〉 = + A2 |YaȧY ′

bḃ
〉 + AB |YbȧY ′

aḃ
〉 + AB |Y

aḃ
Y ′

bȧ〉 + B2 |YbḃY
′
aȧ〉

+ AC ǫabǫ
γδ|ΥγȧΥ ′

δḃ
〉 + BC ǫabǫ

γδ|ΥγḃΥ
′
δȧ〉

+ AC ǫȧḃǫ
γ̇δ̇|Ψaγ̇Ψ ′

bδ̇
〉 + BC ǫȧḃǫ

γ̇δ̇|Ψbγ̇Ψ ′
aδ̇
〉

− C2 ǫabǫȧḃǫ
γδǫγ̇δ̇|Zγγ̇Z ′

δδ̇
〉S|Zαα̇Z ′

ββ̇
〉 = + D2 |Zαα̇Z′

ββ̇
〉 + DE |Zβα̇Z′

αβ̇
〉 + DE |Z

αβ̇
Z′

βα̇〉 + E2 |Zββ̇Z ′
αα̇〉

− DF ǫα̇β̇ǫċḋ|ΥαċΥ
′

βḋ
〉 − EF ǫα̇β̇ǫċḋ|ΥβċΥ

′
αḋ
〉

− DF ǫαβǫcd|Ψcα̇Ψ ′

dβ̇
〉 − EF ǫαβǫcd|Ψcβ̇Ψ ′

dα̇〉

− F 2 ǫαβǫα̇β̇ǫcdǫċḋ|YcċY
′
dḋ
〉S|YaȧZ

′
ββ̇

〉 = + G2 |YaȧZ′

ββ̇
〉 − GH |ΥβȧΨ ′

aβ̇
〉 + GH |Ψ

aβ̇
Υ ′

βȧ〉 + H2 |Zββ̇Y ′
aȧ〉S|Zαα̇Y ′

bḃ
〉 = + L2 |Zαα̇Y ′

bḃ
〉 − KL |Ψbα̇Υ ′

αḃ
〉 + KL |ΥαḃΨ

′

bα̇〉 + K2 |YbḃZ
′
αα̇〉

Fermion-FermionS|Ψaα̇Ψ ′
bβ̇
〉 = + AD |Ψaα̇Ψ ′

bβ̇
〉 + BD |Ψbα̇Ψ ′

aβ̇
〉 + AE |Ψaβ̇Ψ ′

bα̇〉 + BE |Ψbβ̇Ψ ′
aα̇〉

+ AF ǫċḋǫ
α̇β̇|YaċY

′

bḋ
〉 + BF ǫċḋǫ

α̇β̇ |YbċY
′
aḋ
〉

− CD ǫabǫ
γδ|Zγα̇Z′

δβ̇
〉 − CE ǫabǫ

γδ|Zγβ̇Z ′
δα̇〉

+ CF ǫabǫα̇β̇ǫγδǫċḋ|ΥγċΥ
′
δḋ
〉S|ΥαȧΥ

′
βḃ
〉 = + AD |ΥαȧΥ ′

βḃ
〉 + AE |ΥβȧΥ ′

αḃ
〉 + BD |ΥαḃΥ

′

βȧ〉 + BE |ΥβḃΥ
′
αȧ〉

+ AF ǫαβǫcd|YcȧY ′

dḃ
〉 + BF ǫαβǫcd|YcḃY

′
dȧ〉

− CD ǫȧḃǫ
γ̇δ̇|Zαγ̇Z′

βδ̇
〉 − CE ǫȧḃǫ

γ̇δ̇|Zβγ̇Z ′
αδ̇
〉

+ CF ǫȧḃǫαβǫcdǫγ̇δ̇|Ψcγ̇Ψ ′
dδ̇
〉S|Ψaα̇Υ ′

βḃ
〉 = + GL |Ψaα̇Υ ′

βḃ
〉 − HL |Zβα̇Y ′

aḃ
〉 − GK |YaḃZ

′

βα̇〉 − HK |ΥβḃΨ
′
aα̇〉S|ΥαȧΨ

′
bβ̇
〉 = + GL |ΥαȧΨ ′

bβ̇
〉 + GK |YbȧZ′

αβ̇
〉 + HL |Z

αβ̇
Y ′

bȧ〉 − HK |Ψbβ̇Υ ′
αȧ〉

Boson-FermionS|YaȧΨ
′
bβ̇
〉 = + AG |YaȧΨ ′

bβ̇
〉 + BG |YbȧΨ ′

aβ̇
〉 + AH |Ψ

aβ̇
Y ′

bȧ〉 + BH |Ψbβ̇Y ′
aȧ〉

+ CGǫabǫ
γδ|ΥγȧZ′

δβ̇
〉 − CH ǫabǫ

γδ|Zγβ̇Υ ′
δȧ〉S|YaȧΥ

′
βḃ
〉 = + AG |YaȧΥ ′

βḃ
〉 + AH |ΥβȧY ′

aḃ
〉 + BG |YaḃΥ

′

βȧ〉 + BH |ΥβḃY
′
aȧ〉

− CGǫȧḃǫ
γ̇δ̇|Ψaγ̇Z′

βδ̇
〉 + CH ǫȧḃǫ

γ̇δ̇|Zβγ̇Ψ ′
aδ̇
〉S|Ψaα̇Y ′

bḃ
〉 = + AL |Ψaα̇Y ′

bḃ
〉 + BL |Ψbα̇Y ′

aḃ
〉 + AK |Y

aḃ
Ψ ′

bα̇〉 + BK |YbḃΨ
′
aα̇〉

− CL ǫabǫ
γδ|Zγα̇Υ ′

δḃ
〉 + CK ǫabǫ

γδ|ΥγḃZ
′
δα̇〉S|ΥαȧY

′
bḃ
〉 = + AL |ΥαȧY ′

bḃ
〉 + AK |YbȧΥ ′

αḃ
〉 + BL |Υ

αḃ
Y ′

bȧ〉 + BK |YbḃΥ
′
αȧ〉

+ CL ǫȧḃǫ
γ̇δ̇|Zαγ̇Ψ ′

bδ̇
〉 − CK ǫȧḃǫ

γ̇δ̇|Ψbγ̇Z ′
αδ̇
〉
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S|Zαα̇Ψ ′
bβ̇
〉 = + DL |Zαα̇Ψ ′

bβ̇
〉 − DK |Ψbα̇Z′

αβ̇
〉 + EL |Zαβ̇Ψ ′

bα̇〉 − EK |Ψbβ̇Z ′
αα̇〉

+ FL ǫα̇β̇ǫċḋ|ΥαċY
′

bḋ
〉 + FK ǫα̇β̇ǫċḋ|YbċΥ

′
αḋ
〉S|Zαα̇Υ ′

βḃ
〉 = + DL |Zαα̇Υ ′

βḃ
〉 + EL |Zβα̇Υ ′

αḃ
〉 − DK |ΥαḃZ

′

βα̇〉 − EK |ΥβḃZ
′
αα̇〉

+ FL ǫαβǫcd|Ψcα̇Y ′

dḃ
〉 + FK ǫαβǫcd|YcḃΨ

′
dα̇〉S|Ψaα̇Z ′

ββ̇
〉 = + DG |Ψaα̇Z′

ββ̇
〉 − DH |Zβα̇Ψ ′

aβ̇
〉 + EG |Ψ

aβ̇
Z′

βα̇〉 − EH |Zββ̇Ψ ′
aα̇〉

− FGǫα̇β̇ǫċḋ|YaċΥ
′

βḋ
〉 − FH ǫα̇β̇ǫċḋ|ΥβċY

′
aḋ
〉S|ΥαȧZ

′
ββ̇
〉 = + DG |ΥαȧZ′

ββ̇
〉 + EG |ΥβȧZ′

αβ̇
〉 − DH |Zαβ̇Υ ′

βȧ〉 − EH |Zββ̇Υ ′
αȧ〉

+ FGǫαβǫcd|YcȧΨ ′

dβ̇
〉 + FH ǫαβǫcd|Ψcβ̇Y ′

dȧ〉
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